Knowledge Modeling in Prior Art Search
نویسندگان
چکیده
This study explores the benefits of integrating knowledge representations in prior art patent retrieval. Key to the introduced approach is the utilization of human judgment available in the form of classifications assigned to patent documents. The paper first outlines in detail how a methodology for the extraction of knowledge from such an hierarchical classification system can be established. Further potential ways of integrating this knowledge with existing Information Retrieval paradigms in a scalable and flexible manner are investigated. Finally based on these integration strategies the effectiveness in terms of recall and precision is evaluated in the context of a prior art search task for European patents. As a result of this evaluation it can be established that in general the proposed knowledge expansion techniques are particularly beneficial to recall and, with respect to optimizing field retrieval settings, further result in significant precision gains.
منابع مشابه
Mining Entity Types from Query Logs via User Intent Modeling
We predict entity type distributions in Web search queries via probabilistic inference in graphical models that capture how entitybearing queries are generated. We jointly model the interplay between latent user intents that govern queries and unobserved entity types, leveraging observed signals from query formulations and document clicks. We apply the models to resolve entity types in new quer...
متن کاملRanking Authors with Learning-to-rank Topic Modeling
Topic modeling has emerged as a popular learning technique not only in mining text representations, but also in modeling authors’ interests and influence, as well as predicting linkage among documents or authors. However, few existing topic models distinguish and make use of the prior knowledge in regard to the different importance of documents (authors) over topics. In this paper, we focus on ...
متن کاملThe impact of different leadership styles in successful implementation of knowledge management in organizations by structural equation modeling
In an era that in which the economy is in the core of knowledge aspect, knowledge is considered as a vital factor in maintaining the sustained competitive advantage of organizations. Today, the art and skill of management in organizations is moving towards changing into the art of "knowledge management"; and, leadership means providing suitable conditions and grounds in producing valuable know...
متن کاملType-Constrained Representation Learning in Knowledge Graphs
Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides s...
متن کاملAn Ensemble Click Model for Web Document Ranking
Annually, web search engine providers spend more and more money on documents ranking in search engines result pages (SERP). Click models provide advantageous information for ranking documents in SERPs through modeling interactions among users and search engines. Here, three modules are employed to create a hybrid click model; the first module is a PGM-based click model, the second module in a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010